Nmap Scripting Engine
Documentation

Table of Contents

I 11 oo (U Tox i o] o IR PP 2
2.USage and EXAMPIES ...t 4
S o g1 o O (=00 = S PP 4

2.2. Command-liNE ATGUIMENES ...ttt e e et e e e e e ean s 7

2.3, SCHPL SEIECHION ... et et 8

2.4, ATQUMENES TO SCITIES .. eeneeeti ettt ettt ettt e et e et e et e e e e e e aeanns 9

2.5. COMPIEE EXAMPIES ... eeeeeeeeei e ettt e et e e 10

o T o e 1 10 PP 10
3L.deSCri Pti ON FEId ..cooeieie e 10
32.Cat €gO0ri €S FIEld ..o 10

BTG - U | A o o] 1= o 10

3 B T o = 1= = = o 11
3.5.dependenci €S FIEldoooii i 11

3.6. POt @nNd HOSE RUIES ... e e et e 12

I o 1o o PSPPSRI 12

S o 1 o 1o = N 12
4.1, LUGBASE LANQUEBJEueeneeeeetieeee e e ettt e e e e e e e e e e e e et e e r e anns 12

LI VS S o] 13
NS o o = PSP 13
6.1, LISt Of Al LIDIaITES ..vu et 13

6.2. HaCKiNg NSE LibIariES .. ouvu it e e e e e e aens 17

6.3. Adding C ModulesSto NSEIIDuiiiiee e 17

8 L0070 3 A PSP 18
7.1. Information Passed tO @ SCHPL ... evveiii e e e e 18

7.2 NEWOTK /O APl .ot aaan s 20
ConnECt-Styl€ NEEWOTK 11O ... et e e e e e e 21

Raw packet NEEWOIK 17O ... oue e e e e e e e e 21

AR o= o) o) I =0T | oo PP 22

A 1 4 =Y o = 1 Y/ 23

S o 10 A0V € g To IV o) T 23
8L TREHEAA ... 24

B2 TRERUIE ... et et e et 25

8.3. ThE MEChANISM ... e 25

9. Writing Script Documentation (NSEDOC)vivveiiiieii e e e e e 27
9.1. NSE DOCUMENEALION TAYS ...+ evveeeeeeerteeetneeetneeettaeeaaeeateesanaeeaneeaneeeanaaeenaeesnaeanaeanns 29

10. Script Parall€lism N NSE .. ooee e e e e e e e e 30
10.1. WOTKEr TRI@BOS ...ttt et e ettt e e e et e e e eatn e eeees 31

10.2. THIrEaO MULEXES ... eeeeei ettt et e et e e et e e aa e e eaaens 32

10.3. Condition VarTaleS ... e e e 34

@ 1

10.4. Collaborative MUItIthreadingccuiiiiiiiiiie e e 35

The BaSe THIEAHeu e et 36

11. Version Detection USING NSEiiiiiiii e e e e e e e e e e e eaes 37
12, EXample SCript: f i NQEE . NS et e e s 39
13, Implementation DELAISiie e e 39
13. 1. INitialiZation Phaseciieiice e 40

13.2. Matching SCrPLSWIth TargelSueeeiiii e eens 41

13,3, SCIIPE EXECULTON ...ttt ettt et e e et e et e et e e et e e e e ean s 41

1. Introduction

@ Note
This PDF version of the NSE documentation was prepared for the presentation by Fyodor and
David Fifield at the Black Hat Briefings LasVegas 2010. While reading thiswill certainly help
you master the Nmap Scripting Engine, we aim to make our talk useful, informative, and
entertaining even for folks who haven't. You can read the latest version of this online at
http://nmap.org/book/nse.html.

The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible features. It allows users to
write (and share) simple scripts to automate a wide variety of networking tasks. Those scripts are then
executed in parallel with the speed and efficiency you expect from Nmap. Users can rely on the growing
and diverse set of scripts distributed with Nmap, or write their own to meet custom needs.

We designed NSE to be versatile, with the following tasks in mind:

Network discovery
Thisis Nmap's bread and butter. Examples include looking up whois data based on the target domain,
querying ARIN, RIPE, or APNIC for the target IP to determine ownership, performing identd lookups
on open ports, SNMP queries, and listing available NFS/SMB/RPC shares and services.

M ore sophisticated version detection

The Nmap version detection system (http://nmap.org/book/vscan.html) is able to recognize thousands
of different services through its probe and regular expression signature based matching system, but it
cannot recognize everything. For example, identifying the Skype v2 service requires two independent
probes, which version detection isn't flexible enough to handle. Nmap could also recognize more SNM P
servicesif it tried afew hundred different community names by brute force. Neither of these tasks are
well suited to traditional Nmap version detection, but both are easily accomplished with NSE. For these
reasons, version detection now calls NSE by default to handle some tricky services. This is described
in Section 11, “Version Detection Using NSE” [37].

Vulnerability detection
When a new vulnerability is discovered, you often want to scan your networks quickly to identify
vulnerable systems before the bad guys do. While Nmap isn't a comprehensive vulnerability scanner,
NSE is powerful enough to handle even demanding vulnerability checks. Many vulnerability detection
scripts are already available and we plan to distribute more as they are written.

2 1. Introduction <@

http://nmap.org/book/nse.html
http://nmap.org/book/vscan.html

Backdoor detection
Many attackers and some automated worms leave backdoors to enable later reentry. Some of these can
be detected by Nmap's regular expression based version detection. For example, within hours of the
MyDoom worm hitting the Internet, Jay Moran posted an Nmap version detection probe and signature
so that others could quickly scan their networks for MyDoom infections. NSE is needed to reliably
detect more complex worms and backdoors.

Vulnerability exploitation
As a general scripting language, NSE can even be used to exploit vulnerabilities rather than just find
them. The capability to add custom exploit scripts may be valuable for some people (particularly
penetration testers), though we aren't planning to turn Nmap into an exploitation framework such as
Metaspl oith.

These listed items were our initial goals, and we expect Nmap users to come up with even more inventive
uses for NSE.

Scripts are written in the embedded L ua programming Ianguagez. Thelanguage itself iswell documented in
the books Programming in Lua, Second Edition and Lua 5.1 Reference Manual. The reference manual is
also freely available online®, asis the first edition of Programming in Lua®. Given the availability of these
excellent general Lua programming references, this document only covers aspects and extensions specific
to Nmap's scripting engine.

NSE is activated with the - sC option (or - - scri pt if you wish to specify a custom set of scripts) and
results are integrated into Nmap normal and XML output. Two types of scripts are supported: service and
host scripts. Service scripts relate to a certain open port (service) on the target host, and any results they
produce are included next to that port in the Nmap output port table. Host scripts, on the other hand, run no
more than once against each target |P and produce results below the port table. Example 1 shows a typical
script scan. Service scripts producing output in thisexamplearessh- host key, which providesthe system's
RSA and DSA SSH keys, and r pci nf o, which queries portmapper to enumerate available services. The
only host script producing output in this example is snb- os- di scovery, which collects a variety of
information from SMB servers. Nmap discovered all of thisinformation in athird of a second.

L http: /Avww.metaspl oit.com

2 http: //imww.lua.org/

8 http: //Amww.lua.org/manual/5.1/
4 http: //www.l ua.org/pil/

S 1. Introduction 3

http://www.metasploit.com
http://www.lua.org/
http://www.lua.org/manual/5.1/
http://www.lua.org/pil/
http://www.metasploit.com
http://www.lua.org/
http://www.lua.org/manual/5.1/
http://www.lua.org/pil/

Example 1. Typical NSE output
nmap -sC -p22, 111,139 -T4 | ocal host

Starting Nmap (http://nmap.org)

Interesting ports on flog (127.0.0.1):

PORT STATE SERVI CE

22/ tcp open ssh

| ssh-hostkey: 1024 b1l: 36: 0d: 3f: 50: dc: 13: 96: b2: 6e: 34: 39: 0d: 9b: 1a: 38 (DSA)
| _ 2048 77:d0: 20: 1c: 44: 1f : 87: a0: 30: aa: 85: cf: e8: ca: 4c: 11 (RSA)

111/tcp open rpchind

| rpcinfo:
| 100000 2,3,4 111/ udp rpchind
| 100024 1 56454/ udp status

| _ 100000 2,3,4 111/tcp rpchbind
139/tcp open netbios-ssn

Host script results:

| snb-os-discovery: Unix

| LAN Manager: Sanba 3.0.31-0.fc8
| _ Nane: WORKGROUP

Nmap done: 1 IP address (1 host up) scanned in 0.33 seconds

2. Usage and Examples

While NSE has a complex implementation for efficiency, it is strikingly easy to use. Simply specify - sCto
enable the most common scripts. Or specify the - - scri pt option to choose your own scripts to execute
by providing categories, script file names, or the name of directoriesfull of scripts you wish to execute. You
can customize some scripts by providing arguments to them viathe - - scri pt - ar gs option. The two
remaining options, - - scri pt-trace and - - scri pt - updat edb, are generally only used for script
debugging and development. Script scanning is also included as part of the - A (aggressive scan) option.

Script scanning is normally done in combination with a port scan, because scripts may be run or not run
depending on the port states found by the scan. With the - sn option it is possible to run a script scan without
a port scan, only host discovery. In this case only host scripts will be eligible to run. To run a script scan
with neither a host discovery nor aport scan, usethe - Pn - sn options together with- sCor - - scri pt .
Every host will be assumed up and still only host scripts will be run. Thistechniqueis useful for scriptslike
whoi s. nse that only use the remote system'’s address and don't require it to be up.

Scripts are not run in a sandbox and thus could accidentally or maliciously damage your system or invade
your privacy. Never run scripts from third parties unless you trust the authors or have carefully audited the
scripts yourself.

2.1. Script Categories

NSE scripts define alist of categories they belong to. Currently defined categories are aut h, def aul t,
di scovery, external , fuzzer, intrusive, nmal war e, saf e, ver si on, and vul n. Category
names are not case sensitive. The following list describes each category.

4 2. Usage and Examples &>

aut

def

h
These scriptstry to determine authentication credential s on the target system, often through abrute-force
attack. Examplesinclude snnp- br ut e, ht t p- aut h, and f t p- anon.

aul t

These scripts are the default set and are run when using the - sCor - A options rather than listing scripts
with --script. This category can aso be specified explicitly like any other using
--script =def aul t . Many factors are considered in deciding whether a script should be run by
default:

Speed
A default scan must finish quickly, which excludes brute force authentication crackers, web spiders,
and any other scripts which can take minutes or hours to scan a single service.

Usefulness
Default scans need to produce valuable and actionable information. If even the script author has
trouble explaining why an average networking or security professional would find the output
valuable, the script should not run by default. The script may still be worth including in Nmap so
that administrators can run for those occasions when they do need the extrainformation.

Verbosity
Nmap output is used for awide variety of purposes and needs to be readable and concise. A script
which frequently produces pages full of output should not be added to the def aul t category.
When there is no important information to report, NSE scripts (particularly default ones) should
return nothing. Checking for an obscure vulnerability may be OK by default as long as it only
produces output when that vulnerability discovered.

Reliability
Many scripts use heuristics and fuzzy signature matching to reach conclusions about the target host
or service. Examples include sni f f er - det ect and sql -i nj ecti on. If the script is often
wrong, it doesn't belong in the def aul t category where it may confuse or mislead casual users.
Users who specify a script or category directly are generally more advanced and likely know how
the script works or at least where to find its documentation.

Intrusiveness
Some scripts are very intrusive because they use significant resources on the remote system, are
likely to crash the system or service, or are likely to be perceived as an attack by the remote
administrators. The more intrusive a script is, the less suitable it is for the def aul t category.
Default scripts are aimost aways in the saf e category too, though we occasionally allow
i ntrusive scripts by default when they are only mildly intrusive and score well in the other
factors.

Privacy
Some scripts, particularly thosein the ext er nal category described later, divulge information to
third parties by their very nature. For example, thewhoi s script must divulge the target IP address
to regional whois registries. We have also considered (and decided against) adding scripts which
check target SSH and SSL key fingerprints against Internet weak key databases. The more
privacy-invasive a script is, the less suitableit isfor def aul t category inclusion.

@B

2. Usage and Examples 5

We don't have exact thresholds for each of these criteria, and many of them are subjective. All of these
factors are considered together when making a decision whether to promote a script into thedef aul t
category. A few default scriptsarei dent d- owner s (determinesthe username running remote services
using identd), http-auth (obtains authentication scheme and realm of web sites requiring
authentication), and f t p- anon (tests whether an FTP server alows anonymous access).

di scovery
These scriptstry to actively discover more about the network by querying public registries, SNM P-enabled
devices, directory services, and the like. Examplesinclude ht ml - ti t | e (obtainsthe title of the root
path of web sites), smb- enum shar es (enumeratesWindows shares), and snnp- sysdescr (extracts
system details via SNMP).

ext er nal
Scriptsin this category may send data to a third-party database or other network resource. An example
of thisiswhoi s, which makes a connection to whois servers to learn about the address of the target.
There is aways the possibility that operators of the third-party database will record anything you send
to them, which in many cases will include your |P address and the address of the target. Most scripts
involve traffic strictly between the scanning computer and the client; any that do not are placed in this
category.

fuzzer
This category contains scripts which are designed to send server software unexpected or randomized
fieldsin each packet. While this technique can useful for finding undiscovered bugs and vulnerabilities
in software, it is both a slow process and bandwidth intensive. An example of a script in this category
is dns- f uzz, which bombards a DNS server with slightly flawed domain requests until either the
server crashes or auser specified time limit elapses.

i ntrusive

These are scripts that cannot be classified in the saf e category because the risks are too high that they
will crash the target system, use up significant resources on the target host (such as bandwidth or CPU
time), or otherwise be perceived as malicious by the target's system administrators. Examples are
ht t p- open- pr oxy (which attempts to use the target server as an HTTP proxy) and snnp- br ut e
(which tries to guess a device's SNM P community string by sending common values such aspubl i c,
privat e, and ci sco). Unlessascript isin the specia ver si on category, it should be categorized
aseither saf e ori ntrusi ve.

mal war e
These scripts test whether the target platform is infected by maware or backdoors. Examples include
snt p- st rangeport, which watches for SMTP servers running on unusua port numbers, and
aut h- spoof , which detects identd spoofing daemons which provide a fake answer before even
receiving a query. Both of these behaviors are commonly associated with malware infections.

saf e

Scripts which weren't designed to crash services, use large amounts of network bandwidth or other
resources, or exploit security holes are categorized as saf e. These are less likely to offend remote
administrators, though (aswith all other Nmap features) we cannot guarantee that they won't ever cause
adverse reactions. Most of these perform general network discovery. Examples are ssh- host key
(retrievesan SSH host key) andht ml - ti t | e (grabsthetitlefrom aweb page). Scriptsinthever si on
category are not categorized by safety, but any other scripts which aren't in saf e should be placed in
i ntrusive.

6 2. Usage and Examples <&

ver

vul

sion

Thescriptsin this special category are an extension to the version detection feature and cannot be selected
explicitly. They are selected to run only if version detection (- sV) was requested. Their output cannot
be distinguished from version detection output and they do not produce service or host script results.
Examplesareskypev2- ver si on, ppt p- ver si on,andi ax2- ver si on.

n
These scripts check for specific known vulnerabilities and generally only report resultsif they arefound.
Examplesincluder eal vnc- aut h- bypass and xanpp- def aul t - aut h.

2.2. Command-line Arguments

These are the five command line arguments specific to script-scanning:

-sC

--s

Performs a script scan using the default set of scripts. Itisequivalentto- - scri pt =def aul t . Some
of the scriptsin thisdef aul t category are considered intrusive and should not be run against a target
network without permission.

cript <fil enane>| <category>|<directory>|<expression>|all[,...]

Runs a script scan using the comma-separated list of filenames, script categories, and directories. Each
element in the list may also be a Boolean expression describing a more complex set of scripts. Each
element isinterpreted first as an expression, then as a category, and finally as afile or directory name.
The specia argument al | makesevery script in Nmap's script database eligibletorun. Theal | argument
should be used with caution as NSE may contain dangerous scripts including exploits, brute force
authentication crackers, and denial of service attacks.

File and directory names may be relative or absolute. Absolute names are used directly. Relative paths
arelooked for in the following places until found:

--datadir

$NVAPDI R

~/ . nmap (not searched on Windows)

NVAPDATADI R

the current directory

A scri pt s subdirectory isalso tried in each of these.

When a directory name is given, Nmap loads every file in the directory whose name ends with . nse.
All other filesare ignored and directories are not searched recursively. When afilenameis given, it does
not have to havethe. nse extension; it will be added automatically if necessary.

See Section 2.3, “ Script Selection” [8] for examples and afull explanation of the- - scri pt option.

Nmap scripts are stored in a scri pts subdirectory of the Nmap data directory by default (see
http://nmap.org/book/data-files.ntml). For efficiency, scripts are indexed in a database stored in
scripts/script.db, which lists the category or categories in which each script belongs. The
argument al | will execute all scriptsin the Nmap script database, but should be used cautiously since
Nmap may contain exploits, denial of service attacks, and other dangerous scripts.

@B

2. Usage and Examples 7

http://nmap.org/book/data-files.html

--script-args <args>
Provides argumentsto the scripts. See Section 2.4, “Argumentsto Scripts’ [9] for adetailed explanation.

--script-trace
Thisoption issimilar to - - packet - t r ace, but works at the application level rather than packet by
packet. If this option is specified, al incoming and outgoing communication performed by scriptsis
printed. The displayed information includes the communication protocol, source and target addresses,
and the transmitted data. If more than 5% of transmitted datais unprintable, hex dumps are given instead.
Specifying - - packet - t r ace enables script tracing too.

--scri pt-updat edb
This option updates the script database found in scri pt s/ scri pt. db which is used by Nmap to
determine the avail able default scripts and categories. It is only necessary to update the database if you
have added or removed NSE scripts from the default scri pt s directory or if you have changed the
categories of any script. This option is used by itself without arguments: nmap --script-updatedb.

Some other Nmap options have effects on script scans. The most prominent of theseis- sV. A version scan
automatically executesthe scriptsinthever si on category. The scriptsin this category are slightly different
than other scripts because their output blends in with the version scan results and they do not produce any
Script scan output.

Another option which affectsthe scripting engineis- A. The aggressive Nmap modeimpliesthe - sCoption.

2.3. Script Selection

The--scri pt option takes a comma-separated list of categories, filenames, and directory names. Some
simple examples of its use;

nmap --script default,safe
Loads dl scriptsinthedef aul t and saf e categories.

nmap --script smb-os-discovery
Loads only the snb- os- di scovery. nse script. Note that the . nse extension is optional.

nmap --script default,banner,/home/user /customscripts
Loadsthescriptinthedef aul t category, thebanner . nse script, and al . nse filesin the directory
/ hone/ user/ cust onscri pts.

When referring to scriptsfrom scri pt . db by name, you can use a shell-style *** wildcard.

nmap --script " http-*"
Loads al scripts whose name starts with http-, such as http-auth.nse and
ht t p- open- pr oxy. nse. Theargument to - - scri pt had to be in quotes to protect the wildcard
from the shell.

More complicated script selection can be done using the and, or, and not operators to build Boolean
expressions. The operators have the same precedence asin Lua: not isthe highest, followed by and and
then or . You can alter precedence by using parentheses. Because expressions contain space charactersit is
necessary to quote them.

8 2. Usage and Examples <&

nmap --script " not intrusive"
L oads every script except for thosein thei nt r usi ve category.

nmap --script " default or safe’
This is functionally equivalent to nmap --script " default,safe” . It loads al scripts that are in the
def aul t category or the saf e category or both.

nmap --script " default and safe”
Loads those scripts that are in both the def aul t and saf e categories.

nmap --script " (default or safe or intrusive) and not http-*"
Loads scriptsinthedef aul t, saf e, ori nt r usi ve categories, except for those whose names start
withht t p-.

Names in a Boolean expression may be a category, afilenamefromscri pt. db, or al | . A nameis any
seguence of characters not containing* ', *, ", ‘(",*) ', or‘; ’, except for the sequences and, or , and not ,
which are operators.

2.4. Arguments to Scripts

Arguments may be passed to NSE scripts using the - - scri pt - ar gs option. The arguments describe a
table of key-value pairs and possibly array values. The arguments are provided to scripts as a table in the
registry called nmap. r egi stry. args.

The syntax for script argumentsis similar to Luastable constructor syntax. Arguments are acomma-separated
list of nane=val ue pairs. Names and values may be strings not containing whitespace or the characters
q{,}’, =", or',". To include one of these characters in a string, enclose the string in single or double
guotes. Within a quoted string, ‘\ ’ escapes a quote. A backslash is only used to escape quotation marksin
this special case; in al other cases a backdash isinterpreted literally.

Values may also be tables enclosed in { }, just as in Lua. A table may contain simple string values, for
example a list of proxy hosts; or more name-value pairs, including nested tables. Nested subtables are
commonly used to pass arguments specific to one script, in a table named after the script. That iswhat is
happening with thewhoi s table in the example bel ow.

Here isatypical Nmap invocation with script arguments:
nmap -sC --script-args 'user=foo,pass=" ,{}=bar" ,whois={whodb=nofollow+ripe},user db=C:\Some\Path\To\Fi

Notice that the script arguments are surrounded in single quotes. This prevents the shell from interpreting
the double quotes and doing automatic string concatenation. The command resultsin this Luatable:

{user="fo00", pass=", {} =bar", whoi s={ whodb="nof ol | ow+ri pe"}, userdb="C: \\ Sone\\ Pat h\\ To\\ F
You could then access the username " f 00" inside your script with this statement:
| ocal username = nnap.registry.args. user

The online NSE Documentation Portal at http://nmap.org/nsedoc/ lists the arguments that each script accepts.

<& 2. Usage and Examples 9

http://nmap.org/nsedoc/

2.5. Complete Examples

nmap -sC example.com
A simple script scan using the default set of scripts.

nmap -sn -sC example.com
A script scan without a port scan; only host scripts are eligible to run.

nmap -Pn -sn -sC example.com
A script scan without host discovery or a port scan. All hosts are assumed up and only host scripts are
eligibleto run.

nmap --script smb-os-discovery --script-trace example.com
Execute a specific script with script tracing.

nmap --script snmp-sysdescr --script-args snmpcommunity=admin example.com
Run an individual script that takes a script argument.

nmap --script mycustomscripts,safe example.com
Execute al scriptsinthemycust onscri pt s directory aswell asall scriptsin the saf e category.

3. Script Format

NSE scripts consist of two—five descriptive fields along with either a port or host rule defining when the
script should be executed and an action block containing the actual script instructions. Values can be assigned
to the descriptive fields just as you would assign any other Lua variables. Their names must be lowercase
as shown in this section.

3.1.descri ption Field

Thedescri pti on field describes what a script is testing for and any important notes the user should be
aware of. Depending on script complexity, the description may vary from afew sentencesto afew paragraphs.
Thefirst paragraph should be a brief synopsis of the script function suitable for stand-alone presentation to
the user. Further paragraphs may provide much more script detail.

3.2.cat egori es Field

Thecat egori es field defines one or more categories to which a script belongs (see Section 2.1, “ Script
Categories’ [4]). The categories are case-insensitive and may be specified in any order. They are listed in
an array-style Luatable asin this example:

categories = {"default", "discovery", "safe"}

3.3. aut hor Field

Theaut hor field containsthe script authors' names and can also contain contact information (such ashome
page URLS). We no longer recommend including email addresses because spammers might scrape them

10 3. Script Format &>

from the nsedoc web site. This optional field is not used by NSE, but gives script authors their due credit or
blame.

3.4.1i cense Field

Nmap is a community project and we welcome all sorts of code contributions, including NSE scripts. So if
you write avaluable script, don't keep it to yourself! The optiona | i cense field helps ensure that we have
legal permission to distribute all the scripts which come with Nmap. All of those scripts currently use the
standard Nmap license (described in http://nmap.org/book/man-legal .html). They include thefollowing line:

license = "Sane as Nmap--See http://nmap. or g/ book/ man-1egal . ht m "

The Nmap license is similar to the GNU GPL. Script authors may use a BSD-style license (no advertising
clause) instead if they prefer that.

3.5. dependenci es Field

The dependenci es field is an array containing the names of scripts that should run before this script.
Thisis used when one script can make use of the results of another. For example, most of the snb- * scripts
depend on snb- br ut e, because the accounts found by snb- br ut e may allow the other scripts to get
more information.

When we say “depend on”, we mean it in a loose sense. That is, a script will still run despite missing
dependencies. Given the dependencies, the script will run after all the scriptslistedin the dependencies array.
Thisisan example of thedependenci es tablefrom snb- os- di scovery:

dependenci es = {"snb-brute"}

The dependenciestable is optional. NSE will assume the script has no dependenciesif the field is omitted.

Dependencies establish an internal ordering of scripts, assigning each one a number called a runlevel”®.
When running your scripts you will see the runlevel (along with the total number of runlevels) of each
grouping of scripts run in NSE's output:

NSE: Script scanning 127.0.0. 1.

NSE: Starting runlevel 1 (of 3) scan.
Initiating NSE at 17: 38

Conpl eted NSE at 17:38, 0.00s el apsed
NSE: Starting runlevel 2 (of 3) scan.
Initiating NSE at 17: 38

Conpl eted NSE at 17:38, 0.00s el apsed
NSE: Starting runlevel 3 (of 3) scan.
Initiating NSE at 17: 38

Conpl eted NSE at 17:38, 0.00s el apsed
NSE: Script Scanni ng conpl et ed.

5Up through Nmap version 5.10BETA2, dependencies didn't exist and script authors had to set ar unl evel field manually.

<> 3. Script Format 11

http://nmap.org/book/man-legal.html

3.6. Port and Host Rules

Nmap uses the script rules to determine whether a script should be run against a target. A script contains
either a port rule, which governs which ports of atarget the scripts may run against, or a host rule, which
specifies that the script should be run only once against atarget |P and only if the given conditions are met.
A ruleisaluafunction that returns either t r ue or f al se. The script action is only performed if itsrule
evaluatestot r ue. Host rules accept ahost table as their argument and may test, for example, the | P address
or hostname of the target. A port rule accepts both host and port tables as arguments for any TCP or UDP
portintheopen, open| fil tered,orunfiltered port states. Port rules generally test factors such as
the port number, port state, or listening service name in deciding whether to run against a port. Example
rules are shown in Section 8.2, “The Rule” [25].

3.7. Action

The action is the heart of an NSE script. It contains al of the instructions to be executed when the script's
port or host rule triggers. It is a Lua function which accepts the same arguments as the rule and can return
either ni | or astring. If astring is returned by a service script, the string and script's filename are printed
in the Nmap port table output. A string returned by a host script is printed below the port table. No output
is produced if the script returns ni | . For an example of an NSE action refer to Section 8.3, “The
Mechanism” [25].

4. Script Language

The core of the Nmap Scripting Engine is an embeddable Lua interpreter. Luais a lightweight language
designed for extensibility. It offers a powerful and well documented API for interfacing with other software
such as Nmap.

The second part of the Nmap Scripting Engine is the NSE Library, which connects Lua and Nmap. This
layer handlesissues such asinitialization of the Luainterpreter, scheduling of parallel script execution, script
retrieval and more. It is also the heart of the NSE network 1/O framework and the exception handling
mechanism. It also includes utility librariesto make scripts more powerful and convenient. The utility library
modules and extensions are described in Section 6, “NSE Libraries’ [13].

4.1. Lua Base Language

The Nmap scripting languageis an embedded L uali nterpreter which was extended with librariesfor interfacing
with Nmap. The Nmap API isin the Lua namespace nmap. This means that all calls to resources provided
by Nmap have an nmap prefix. nmap. new_socket () , for example, returns anew socket wrapper object.
TheNmap library layer also takes care of initiaizing the Luacontext, scheduling parallel scriptsand collecting
the output produced by completed scripts.

During the planning stages, we considered several programming languages as the base for Nmap scripting.
Another option was to implement a completely new programming language. Our criteria were strict: NSE
had to be easy to use, small in size, compatible with the Nmap license, scalable, fast and parallelizable.
Several previous efforts (by other projects) to design their own security auditing language from scratch

6 http: //imww.lua.org/

12 4. Script Language <&

http://www.lua.org/
http://www.lua.org/

resulted in awkward solutions, so we decided early not to follow that route. First the Guile Schemeinterpreter
was considered, but the preference drifted towards the Elk interpreter due to its more favorable license. But
paralelizing Elk scripts would have been difficult. In addition, we expect that most Nmap users prefer
procedural programming over functional languages such as Scheme. Larger interpreters such as Perl, Python,
and Ruby are well-known and loved, but are difficult to embed efficiently. In the end, Luaexcelled in all of
our criteria. It is small, distributed under the liberal MIT open source license, has coroutines for efficient
parallel script execution, was designed with embeddability in mind, has excellent documentation, and is
actively developed by alarge and committed community. Luais now even embedded in other popular open
source security tools including the Wireshark sniffer and Snort IDS.

5. NSE Scripts

This section (along list of NSE scripts with brief summaries) is omitted since we aready provide a better
online interface to the information at the NSE Documentation Portal”.

6. NSE Libraries

In addition to the significant built-in capabilities of Lua, we have written or integrated many extension
librarieswhich make script writing more powerful and convenient. Theselibraries (sometimes called modules)
are compiled if necessary and installed along with Nmap. They have their own directory, nsel i b, which
isinstaled in the configured Nmap data directory. Scripts need only require 8 the default libraries in
order to use them.

6.1. List of All Libraries

Thislist isjust an overview to give an idea of what libraries are available. Developers will want to consult
the complete documentation at http://nmap.org/nsedoc/.

afp
This library was written by Patrik Karlsson <patrik@cqure.net> to facilitate communication with the
Apple AFP Service. It is not feature complete and still missing several functions.

asnl
ASN1 functions.

backdoor
This config file is designed for adding a backdoor to the system. It has a few options by default, only
one enabled by default. | suggest

base64
Base64 encoding and decoding. Follows RFC 4648.

bin
Pack and unpack binary data.

7 http: //nmap.org/nsedoc/
8 http: //Amww.lua.org/manual/5.1/manual .html#pdf-require

<& 5. NSE Scripts 13

http://nmap.org/nsedoc/
http://www.lua.org/manual/5.1/manual.html#pdf-require
http://nmap.org/nsedoc/
http://nmap.org/nsedoc/
http://www.lua.org/manual/5.1/manual.html#pdf-require

bit
Bitwise operations on integers.
citrixxml

Thismodule waswritten by Patrik Karl sson and facilitates communication with the Citrix XML Service.
It is not feature complete and is missing several functions and parameters.

comm
Common communication functionsfor network discovery taskslike banner grabbing and dataexchange.

datafiles
Read and parse some of Nmap's datafiles: nmap- pr ot ocol s, nmap-r pc, nmap- servi ces, and
nmap- nmac- pr ef i xes.

db2
DB2 Library supporting a very limited subset of operations

default
More verbose network scripts

dns
Simple DNS library supporting packet creation, encoding, decoding, and querying.

drive
This configuration file pulls info about a given harddrive

experimental
Thisisthe configuration file for modules that aren't quite ready for prime time yet.

http
Client-side HTTP library.

imap
IMAP functions.
ipOps
Utility functions for manipulating and comparing | P addresses.
json
Library methods for handling Json data. It handles json encoding and decoding

Idap
Library methods for handling LDAP.

listop
Functional-style list operations.

match
Buffered network /O helper functions.

14 6. NSE Libraries <@

mongodb
Library methods for handling MongoDB, creating and parsing packets

msrpc
By making heavy use of the 'smb' library, thislibrary will call various M SRPC functions. The functions
used here can be accessed over TCP ports 445 and 139, with an established session. A NULL session
(the default) will work for some functions and operating systems (or configurations), but not for others.

msr pcper formance
This module is designed to parse the PERF_DATA_BLOCK structure, which is stored in the registry
under HKEY_PERFORMANCE_DATA. By querying this structure, you can get a whole lot of
information about what's going on.

msrpctypes
This module was written to marshall parameters for Microsoft RPC (M SRPC) calls. The values passed
in and out are based on structs defined by the protocol, and documented by Samba developers. For
detailed breakdowns of the types, take alook at Samba 4.0's .idl files.

mssql
MSSQL Library supporting avery limited subset of operations

mysql
Simple MySQL Library supporting a very limited subset of operations
http://forge.mysgl.com/wiki/MySQL _Internals ClientServer_Protocol

netbios
Creates and parses NetBIOS traffic. The primary use for thisisto send NetBIOS name requests.

networ k
Thisisthedefault configuration file. It ssimply runs some built-in Window programsto gather information
about the remote system. It'sintended to be simple, demonstrate some of the concepts, and not break/alte
anything.

nmap
Interface with Nmap internals.

nsedebug
Converts an arbitrary datatype into a string. Will recursively convert tables. This can be very useful for
debugging.

openss|
OpenSSL bindings.

packet
Facilities for manipulating raw packets.

pcre
Perl Compatible Regular Expressions.

‘o 6. NSE Libraries 15

http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol

pgsl
PostgreSQL library supporting both version 2 and version 3 of the protocol Thelibrary currently contains

the bare minimum to perform authentication Authentication is supported with or without SSL enabled
and using the plain-text or M D5 authentication mechanisms

pop3
POP3 functions.

proxy
Functions for proxy testing

pwdump
This config file is designed for running password-dumping scripts. So far, it supports pwdump6 2.0.0
and fgdump.

rpc
RPC Library supporting a very limited subset of operations

shortport
Functions for building short portrules.

smb
Implements functionality related to Server Message Block (SMB, also known as CIFS) traffic, which
isaWindows protocol.

smbauth
This module takes care of the authentication used in SMB (LM, NTLM, LMv2, NTLMV2). Thereisa
lot to this functionality, so if you're interested in how it works, read on.

snmp
SNMP functions.

sshl
Functions for the SSH-1 protocol.

ssh2
Functions for the SSH-2 protocol.

stdnse
Standard Nmap Scripting Engine functions.

strbuf
String buffer facilities.

strict
Strict Declared Global library.

tab
Arrange output into tables.

16 6. NSE Libraries <@

unpwdb
Username/password database library.

url
URI parsing, composition, and relative URL resolution.

6.2. Hacking NSE Libraries

Libraries often accidentally make use of globals variables when local scope was intended. Two or more
scripts that make use of library functions which unintentionally use the same global variable will find that
variable constantly rewritten. This is a serious bug that can cause NSE to stall or a correct script to
spectacularly fail, and, because L ua uses global-by-default scope assignment when it encounters avariable,
thisis also a common bug.

Consider a global variable being used by two different scripts, within the library, to hold sockets or data.
When one script isyielded after storing datain the variable, another script awakens only to replace that data.
In contrast, a local variable would store the information on the stack of the running script separate from
others.

To help correct this problem, NSE now uses an adapted library from the standard Lua distribution called
strict. | ua. Thelibrary will raise a runtime error on any access or modification of a global variable
which was undeclared in the file scope. A global variable is considered declared if the library makes an
assignment to the global name (even ni |) in the file scope.

6.3. Adding C Modules to Nselib

A few of the modules included in nselib are written in C or C++ rather than Lua. Two examples are bi t
and pcr e. Werecommend that modules bewrittenin Luaif possible, but C and C++ may be more appropriate
if performance is critical or (as with the pcr e and openssl modules) you are linking to an existing C
library. This section describes how to write your own compiled extensionsto nselib.

The Lua C API is described at length in Programming in Lua, Second Edition, so thisis a short summary.
C modules consist of functions that follow the protocol of the Iua_CFunction9 type. The functions are
registered with Lua and assembled into a library by calling the | uaL_r egi st er function. A specia
initialization function providestheinterface between the modul e and the rest of the NSE code. By convention
theinitialization function is named in theform | uaopen_<nodul e>.

The smallest compiled modulethat comeswith NSEisbi t , and one of the most straightforwardisopenssi .
These modules serve as good examples for a beginning module writer. The source code for bi t isfoundin
nse bit.cc and nse_bit.h, while the openssl source is in nse_openssl.cc and
nse_openssl . h. Most of the other compiled modules follow thisnse_<nodul e nane>. cc naming
convention.

Reviewing the openss| module shows that one of the functionsinnse_openssl . cc isl _nd5, which
calculates an MD5 digest. Its function prototypeis:

static int | _md5(lua_State *L);

° http: //Amww.lua.org/manual/5.1/manual .html# ua_CFunction

‘o 6. NSE Libraries 17

http://www.lua.org/manual/5.1/manual.html#lua_CFunction
http://www.lua.org/manual/5.1/manual.html#lua_CFunction

The prototype showsthat | _nd5 matchesthelua_CFunction type. The function is static because it does not
have to be visible to other compiled code. Only an address is required to register it with Lua. Later in the
file,1 _md5 isentered into an array of typelual_reg and associated with the name nd5:

static const struct lualL_reg openssllib[] = {
{ "md5", |_nd5 },

{ NULL, NULL }

I

This function will now be known as nd5 to NSE. Next the library is registered with a cal to
| ualL_regi st er inside the initiaization function | uaopen_openssl , as shown next. Some lines
relating to the registration of OpenSSL BIGNUM types have been omitted:

LUALI B_API int | uaopen_openssl (lua_State *L) {
lual_regi ster(L, OPENSSLLI BNAME, openssllib);
return 1;

}

The function | uaopen_openssl isthe only function in the file that is exposed in nse_openssl . h.
OPENSSLLI BNANME issimply the string " openssl .

After acompiled module is written, it must be added to NSE by including it in the list of standard libraries
innse_mai n. cc. Thenthe modul€'s sourcefile names must beadded to Makef i | e. i nintheappropriate
places. For both these tasks you can simply follow the example of the other C modules. For the Windows
build, the new source files must be added to the nswi n32/ nmap. vcpr oj project file using MS Visual
Studio (see http://nmap.org/book/i nst-wi ndows. html#i nst-win-source).

7. Nmap API

NSE scripts have access to several Nmap facilities for writing flexible and elegant scripts. The API provides
target host details such as port states and version detection results. It also offers an interface to the Nsock
library for efficient network 1/0.

7.1. Information Passed to a Script

An effective Nmap scripting engine requires more than just a Luainterpreter. Users need easy accessto the
information Nmap has learned about the target hosts. This data is passed as arguments to the NSE script's
act i on method. The arguments, host and por t , are Luatables which contain information on the target
against which the script is executed. If a script matched a hostrule, it gets only the host table, and if it
matched a portrule it gets both host and port . The following list describes each variable in these two
tables.

host
This table is passed as a parameter to the rule and action functions. It contains information on the
operating system run by the host (if the - O switch was supplied), the |P address and the host name of
the scanned target.

host . os
The os entry in the host table is an array of strings. The strings (as many as eight) are the names of the
operating systemsthetarget ispossibly running. Stringsare only enteredinthisarray if the target machine

18 7. Nmap AP <&

http://nmap.org/book/inst-windows.html#inst-win-source

is a perfect match for one or more OS database entries. If Nmap was run without the - O option, then
host. os isni | .

host.ip
Contains a string representation of the IP address of the target host. If the scan was run against a host
name and the reverse DNS query returned more than one | P addresses then the same IP address is used
as the one chosen for the scan.

host . nane
Contains the reverse DNS entry of the scanned target host represented as a string. If the host has no
reverse DNS entry, the value of the field is an empty string.

host . t ar get nane
Contains the name of the host as specified on the command line. If the target given on the command
line contains a netmask or is an | P address the value of the field isni | .

host. directly_connect ed
A Boolean value indicating whether or not the target host is directly connected to (i.e. on the same
network segment as) the host running Nmap.

host . mac_addr
MAC address of the destination host (six-byte long binary string) or ni | , if the host is not directly
connected.

host . mac_addr _next _hop
MAC address of the first hop in the route to the host, or ni | if not available.

host. mac_addr _src
Our own MAC address, which was used to connect to the host (either our network card's, or (with
- - spoof - mac) the spoofed address).

host.interface
A string containing the interface name (dnet-style) through which packets to the host are sent.

host.bin_ip
The target host's | Pv4 address as a 32-hit binary value.

host. bin_ip_src
Our host's (running Nmap) source |Pv4 address as a 32-hit binary value.

port
The port table is passed to an NSE service script (i.e. only those with a portrule rather than a hostrule)
in the same fashion as the host table. It contains information about the port against which the script is
running. Whilethistableisnot passed to host scripts, port states on the target can till be requested from
Nmap using thenmap. get _port _state() andnmap. get _ports() cals.

port. nunber
Contains the port number of the target port.

port. protocol
Defines the protocol of the target port. Valid valuesare" t cp” and " udp" .

<& 7. Nmap AP 19

port.service
Contains a string representation of the service running on por t . nunber as detected by the Nmap
service detection. If theport . ver si on fieldisni | , Nmap has guessed the service based on the port
number. Otherwise version detection was able to determine the listening service and thisfield is equal
toport. version. nane.

port.version
Thisentry is atable which containsinformation retrieved by the Nmap version scanning engine. Some
of the values (such as service name, service type confidence, and the RPC-related values) may be
retrieved by Nmap even if aversion scan was not performed. Values which were not determined default
toni | . The meaning of each valueis given in the following table:

Table 1. port. versi on values

Name Description

name Contains the service name Nmap decided on for the port.

nane_confi dence Evaluates how confident Nmap is about the accuracy of name, from 1
(least confident) to 10.

product, version,|These five variables are the same as those described under

extrai nfo, hostnane,/<x v e r s i oni nf o > i n

ost ype, devi cetype |http://nmap.org/book/vscan-filefor mat.html#vscan-db-match.

service_tunnel Contains the string " none" or "ssl " based on whether or not Nmap
used SSL tunneling to detect the service.

service_fp The servicefingerprint, if any, isprovided in thisvalue. Thisis described

in http://nmap.org/book/vscan-community.html.

rpc_status Contains astring value of good_ pr og if we were able to determine the
program number of an RPC service listening on the port, unknown if
the port appearsto be RPC but we couldn't determine the program number,
not _r pc if the port doesn't appear be RPC, or unt est ed if we haven't
checked for RPC status.

rpc_pr ogr am,|The detected RPC program number and the range of version numbers
rpc _| owv er ,|supportedby that program. Thesewill beni | if r pc_st at us isanything
rpc_hi ghver other than good_pr og.

port.state
Contains information on the state of the port. Service scripts are only run against portsin the open or
open| filteredstates, soport . st at e generally contains one of those values. Other values might
appear if the port tableisaresult of theget _port st at e orget port s functions. You can adjust
the port state using the nmap. set _port_state() cal. This is normaly done when an
open| filtered portisdetermined to be open.

7.2. Network 1/0 API

To alow for efficient and parallelizable network 1/0, NSE provides an interface to Nsock, the Nmap socket
library. The smart callback mechanism Nsock uses is fully transparent to NSE scripts. The main benefit of
NSE's sockets is that they never block on I/O operations, allowing many scripts to be run in parallel. The

20 7. Nmap AP <&

http://nmap.org/book/vscan-fileformat.html#vscan-db-match
http://nmap.org/book/vscan-community.html

1/O parallelism isfully transparent to authors of NSE scripts. In NSE you can either program as if you were
using a single non-blocking socket or you can program asif your connection is blocking. Even blocking 1/0
cals return once a specified timeout has been exceeded. Two flavors of Network 1/O are supported:
connect-style and raw packet.

Connect-style network I/O

This part of the network API should be suitablefor most classical network uses: Users create a socket, connect
it to a remote address, send and receive data and finally close the socket. Everything up to the Transport
layer (whichis either TCP, UDP or SSL) is handled by the library.

An NSE socket is created by calling nmap. new_socket , which returns asocket object. The socket object
supports the usua connect, send, recei ve, and cl ose methods. Additionally the functions
recei ve_bytes, receive_lines, andreceive_buf alow greater control over data reception.
Example 2 shows the use of connect-style network operations. Thet r y function is used for error handling,
as described in Section 7.3, “Exception Handling” [22].

Example 2. Connect-style |/O
require("nmap")

| ocal socket = nmap. new_socket ()

socket : set _ti meout (1000)

try = nmap. new_try(function() socket:close() end)
try(socket: connect (host.ip, port.nunber))
try(socket:send("l ogin"))

response = try(socket:receive())

socket : cl ose()

Raw packet network I/O

For those cases where the connection-oriented approach is too high-level, NSE provides script developers
with the option of raw packet network 1/0.

Raw packet reception is handled through a Libpcap wrapper inside the Nsock library. The steps are to open
a capture device, register listeners with the device, and then process packets as they are received.

Thepcap_open method creates ahandlefor raw socket reads from an ordinary socket object. Thismethod
takes a callback function, which computes a packet hash from a packet (including its headers). This hash
can return any binary string, which is later compared to the strings registered with the pcap_r egi st er
function. The packet hash callback will normally extract some portion of the packet, such as its source
address.

Thepcap reader isinstructed tolisten for certain packetsusingthepcap_r egi st er function. Thefunction
takesabinary string which is compared against the hash value of every packet received. Those packetswhose
hashes match any registered strings will be returned by the pcap_r ecei ve method. Register the empty
string to receive all packets.

A script receivesall packetsfor which alistener hasbeenregistered by callingthepcap_r ecei ve method.
The method blocks until a packet is received or atimeout occurs.

<& 7. Nmap AP 21

The more general the packet hash computing function is kept, the more scripts may receive the packet and
proceed with their execution. To handle packet capture inside your script you first have to create a socket
with nmap. new_socket and later close the socket with socket _obj ect : cl ose—just like with the
connection-based network 1/O.

While receiving packets is important, sending them is certainly a key feature as well. To accomplish this,
NSE provides access to sending at the |P and Ethernet layers. Raw packet writes do not use the same socket
object as raw packet reads, so the nmap. new_dnet function is called to create the required object for
sending. After this, araw socket or Ethernet interface handle can be opened for use.

Once the dnet object is created, the functioni p_open can be called to initialize the object for IP sending.
i p_send sends the actual raw packet, which must start with the IPv4 header. The dnet object places no
restrictions on which | P hosts may be sent to, so the same object may be used to send to many different hosts
whileit is open. To close the raw socket, call i p_cl ose.

For sending at alower level than | P, NSE providesfunctionsfor writing Ethernet frames. et her net _open
initializes the dnet object for sending by opening an Ethernet interface. The raw frame is sent with
et her net _send. Toclosethe handle, call et her net _cl ose.

Sometimesthe easiest waysto understand complex APIsisby example. Thei pi dseq. nse scriptincluded
with Nmap uses raw IP packets to test hosts for suitability for Nmap's Idle Scan (-sl). The
sni ffer-detect. nse script asoincluded with Nmap uses raw Ethernet framesin an attempt to detect
promiscuous-mode machines on the network (those running sniffers).

7.3. Exception Handling

NSE provides an exception handling mechanism which is not present in the base Lualanguage. It istailored
specifically for network |/O operations, and follows afunctional programming paradigm rather than an object
oriented one. Thennap. new _t r y APl method is used to create an exception handler. This method returns
a function which takes a variable number of arguments that are assumed to be the return values of another
function. If an exception isdetected in the return values (thefirst return valueisfalse), then the script execution
is aborted and no output is produced. Optionally, you can pass afunction to new _t r y which will be called
if an exception is caught. The function would generally perform any required cleanup operations.

Example 3 shows cleanup exception handling at work. A new function named cat ch is defined to simply
close the newly created socket in case of an error. It is then used to protect connection and communication
attempts on that socket. If no catch function is specified, execution of the script aborts without further
ado—open sockets will remain open until the next run of Lua's garbage collector. If the verbosity level isat
least one or if the scan is performed in debugging mode a description of the uncaught error condition is
printed on standard output. Note that it is currently not easily possible to group several statementsin onetry
block.

22 7. Nmap API <&

Example 3. Exception handling example
|l ocal result, socket, try, catch

result
socket nmap. new_socket ()
catch = function()
socket : cl ose()

end

try = nmap. new_try(catch)

try(socket: connect (host.ip, port.nunber))
result = try(socket:receive_lines(1l))
try(socket:send(result))

Writing a function which is treated properly by the try/catch mechanism is straightforward. The function
should return multiple values. Thefirst value should be aBoolean whichist r ue upon successful completion
of the function and f al se otherwise. If the function completed successfully, the try construct consumes
the indicator value and returns the remaining values. If the function failed then the second returned value
must be a string describing the error condition. Note that if the valueisnot ni | or f al se itistreated as
t r ue so you can return your value in the normal caseand returnni |, <error description>ifan
€rror occurs.

7.4.The Registry

Theregistry isa Luatable (accessible as nmap. r egi st ry) with the special property that it is visible by
all scripts and retains its state between script executions. The registry is transient—it is not stored between
Nmap executions. Every script can read and writeto the registry. Scripts commonly useit to saveinformation
for other instances of the same script. For example, thewhoi s and asn- quer y scripts may query one |P
address, but receive information which may apply to tens of thousands of IPs on that network. Saving the
information in the registry may prevent other script threads from having to repeat the query.

The registry may also be used to hand information to completely different scripts. For example, the
snp- br ut e script saves a discovered community name in the registry where it may be used by other
SNMP scripts. Script which use the results of another script must declare it using the dependenci es
variable to make sure that the earlier script runsfirst.

Because every script can writeto the registry table, it isimportant to avoid conflicts by choosing keyswisely
(uniquely).

8. Script Writing Tutorial

Suppose that you are convinced of the power of NSE. How do you go about writing your own script? Let's
say that you want to extract information from an identification server to determine the owner of the process
listening on aTCP port. Thisisnot really the purpose of identd (it is meant for querying the owner of outgoing
connections, not listening daemons), but many identd servers alow it anyway. Nmap used to have this
functionality (called ident scan), but it was removed while transitioning to a new scan engine architecture.
The protocol identd usesis pretty simple, but still too complicated to handle with Nmap's version detection
language. First, you connect to theidentification server and send aquery of theform<por t - on- ser ver >,

‘@ 8. Script Writing Tutorial 23

<port-on-client> and terminated with a newline character. The server should then respond with a
string containing the server port, client port, response type, and addressinformation. The addressinformation
is omitted if there is an error. More details are available in RFC 1413, but this description is sufficient for
our purposes. The protocol cannot be modeled in Nmap's version detection language for two reasons. The
first is that you need to know both the local and the remote port of a connection. Version detection does not
providethisdata. The second, more severe obstacle, isthat you need two open connectionsto thetarget—one
to theidentification server and oneto thelistening port you wish to query. Both obstacles are easily overcome
with NSE.

The anatomy of a script is described in Section 3, “ Script Format” [10]. In this section we will show how
the described structure is utilized.

8.1.The Head

The head of the script is essentially its meta information. This includes the fields: descri pti on,
cat egori es, dependenci es, aut hor,andl i cense aswell asinitial NSEDoc information such as
usage, args, and output tags (see Section 9, “Writing Script Documentation (NSEDaoc)” [27]).

The description field should contain a paragraph or more describing what the script does. If anything about
the script results might confuse or mislead users, and you can't eliminate the issue by improving the script
or resultstext, it should be documented inthedescri pt i on. If there are multiple paragraphs, thefirst is
used as a short summary where necessary. Make sure that first paragraph can serve as a stand alone abstract.
This description is short because it is such asimple script:

description = [[
Attenpts to find the owner of an open TCP port by querying an auth
(identd - port 113) daenpn which nust al so be open on the target system

1]

Next comes NSEDoc information. This script is missing the common @isage and @r gs tagssinceitis
so simple, but it does have an NSEDoc @ut put tag:

- - @ut put

-- 21/tcp open ftp ProFTPD 1.3.1

-- | _ auth-owners: nobody

-- 22/tcp open ssh OpenSSH 4. 3p2 Debi an 9etch2 (protocol 2.0)
-- | _ auth-owners: root

-- 25/tcp open snt p Postfix snt pd

-- | _ auth-owners: postfix

-- 80/tcp open http Apache httpd 2.0.61 ((Unix) PHP/4.4.7 ...)
-- | _ auth-owners: dhapache

-- 113/tcp open aut h?

-- | _ auth-owners: nobody

-- 587/tcp open subm ssi on Postfix sntpd

-- | _ auth-owners: postfix

-- 5666/tcp open unknown

-- | _ auth-owners: root

24 8. Script Writing Tutorial <>

Next cometheaut hor, | i cense, and cat egor i es tags. This script belongs to the saf e because we
are not using the service for anything it was not intended for. Because this script is one that should run by
default itisalsointhedef aul t category. Here are the variables in context:

aut hor = "Di man Todor ov"
license = "Sane as Nmap--See http://nmap. org/ book/ man-1 egal . ht m "

categories = {"default", "safe"}

8.2.The Rule

The rule section isa L uamethod which decides whether to skip or execute the script's action method against
aparticular service or host. Thisdecision isusually based on the host and port information passed to therule
function. In the case of the identification script, it is dightly more complicated than that. To decide whether
to run the identification script against a given port we need to know if there is an auth server running on the
target machine. In other words, the script should be run only if the currently scanned TCP port is open and
TCP port 113 is also open. For now we will rely on the fact that identification servers listen on TCP port
113. Unfortunately NSE only gives us information about the currently scanned port.

To find out if port 113 is open, we use the nmap. get _port _st at e function. If the auth port was not
scanned, the get _port _st at e function returns ni | . So we check that the table is not ni | . We also
check that both ports are in the open state. If thisis the case, the action is executed, otherwise we skip the
action.

portrule = function(host, port)
|l ocal auth_port = { nunber=113, protocol ="tcp" }
| ocal identd = nnmap. get_port_state(host, auth_port)

if

identd ~= nil
and identd.state == "open"
and port.protocol == "tcp"
and port.state == "open"

t hen
return true

el se
return false

end

end

8.3. The Mechanism

At last we implement the actual functionality! The script first connects to the port on which we expect to
find the identification server, then it will connect to the port we want information about. Doing so involves
first creating two socket options by calling nmap. new_socket . Next we define an error-handling cat ch
function which closesthose socketsif failureis detected. At this point we can safely use object methods such
asopen, cl ose, send andr ecei ve to operate on the network socket. In this case we call connect to
make the connections. NSE's exception handling mechanism is used to avoid excessive error-handling code.

<> 8. Script Writing Tutorial 25

We simply wrap the networking callsin at r y call which will inturn call our cat ch function if anything
goes wrong.

If the two connections succeed, we construct aquery string and parsetheresponse. If we received a satisfactory
response, we return the retrieved information.

action = function(host, port)
| ocal owner ="'

Il ocal client_ident = nmap. new _socket ()
| ocal client_service = nmap. new_socket ()

| ocal catch = function()
client _ident:close()
client_service: cl ose()
end

local try = nmap.new_try(catch)

try(client_ident:connect(host.ip, 113))
try(client_service:connect(host.ip, port.nunber))

l ocal localip, |ocalport, remoteip, renpteport =
try(client_service:get_info())

| ocal request = port.nunber .. ", " .. localport .. "\n"
try(client_ident:send(request))
owner = try(client_ident:receive_lines(1l))
if string. match(owner, "ERROR') then
owner = ni
el se
owner = string.match(owner, "USERID : .+ : (.+)\n", 1)

end

try(client_ident:close())
try(client_service:close())

return owner
end

Note that because we know that the remote port isstored in por t . nunber , we could have ignored the last
two return values of cl i ent _servi ce: get _i nfo() likethis:

local localip, localport = try(client_service:get_info())

In this example we exit quietly if the service responds with an error. Thisis done by assigning ni | to the
owner variable which will be returned. NSE scripts generally only return messages when they succeed, so
they don't flood the user with pointless alerts.

26 8. Script Writing Tutorial &>

9. Writing Script Documentation (NSEDoc)

Scripts are used by more than just their authors, so they reguire good documentation. NSE modules need
documentation so developers can use them in their scripts. NSE's documentation system, described in this
section, aims to meet both these needs. While reading this section, you may want to browse NSE's online
documentation, which is generated using this system. It is at http://nmap.org/nsedoc/.

NSE uses a customized version of the LuaDoc'® documentation system called NSEDoc. The documentation
for scripts and modulesis contained in their source code, as comments with a special form. Example 4isan
NSEDoc comment taken fromthe st dnse. pri nt _debug() function.

Example 4. An NSEDoc comment for a function

--- Prints a formatted debug nmessage if the current verbosity level is greater
-- than or equal to a given |level.

-- This is a conveni ence w apper around

-- <code>nmap. pri nt _debug_unformatted()</code> The first optional numeric

-- argument, <code>verbosity</code> is used as the verbosity |evel necessary
-- to print the nessage (it defaults to 1 if onmitted). Al remaining arguments
-- are processed with Lua's <code>string. format()</code> function.

-- @aramlevel Optional verbosity |evel.

-- @aramfnm Format string.

-- @aram ... Argunents to format.

Documentation comments start with three dashes: - - - . The body of the comment is the description of the
following code. Thefirst paragraph of the description should be abrief summary, with thefollowing paragraphs
providing more detail. Special tags starting with @mark off other parts of the documentation. In the above
example you see @ar am which is used to describe each parameter of a function. A complete list of the
documentation tagsis found in Section 9.1, “NSE Documentation Tags' [29].

Text enclosed in the HTML-like <code> and </ code> tags will be rendered in a monospace font. This
should be used for variable and function names, as well as multi-line code examples. When a sequence of
lines start with the characters“* , they will be rendered as a bulleted list.

It is good practice to document every public function and table in a script or module. Additionally every
script and module should haveits own file-level documentation. A documentation comment at the beginning
of afile (one that is not followed by a function or table definition) applies to the entire file. File-level
documentation can and should be several paragraphs long, with all the high-level information useful to a
developer using amodule or auser running a script. Example 5 shows documentation for the commmodule
(with afew paragraphs removed to save space).

10 http://luadoc.luaforge.net/

&> 9. Writing Script Documentation (NSEDoc) 27

http://nmap.org/nsedoc/
http://luadoc.luaforge.net/
http://luadoc.luaforge.net/

Example 5. An NSEDoc comment for a module

--- Conmon conmuni cation functions for network di scovery tasks |ike
-- banner grabbing and data exchange.

-- These functions may be passed a table of options, but it's not required. The
-- keys for the options table are <code>"bytes"</code> <code>"l|ines"</code>,

-- <code>"proto"</code> and <code>"ti neout"</code>. <code>"bytes"</code> sets
-- a mni mum nunber of bytes to read. <code>"lines"</code> does the sane for

-- lines. <code>"proto"</code> sets the protocol to comuni cate wth,

-- defaulting to <code>"tcp"</code> if not provided. <code>"tinmeout"</code>

-- sets the socket tineout (see the socket function <code>set_ti neout()</code>
-- for details).

-- @uthor Kris Katterjohn 04/2008

-- @opyright Sane as Nmap--See http://nmap. or g/ book/ man-1 egal . ht m

There are some special considerationsfor documenting scriptsrather than functionsand modules. In particular,
scripts have specia variables for some information which would otherwise belongs in @-tag comments
(script variables are described in Section 3, “ Script Format” [10]). In particular, ascript's description belongs
inthedescri pti on variable rather than in adocumentation comment, and the information that would go
in @ut hor and @opyri ght belong in the variables aut hor and | i cense instead. NSEDoc knows
about these variables and will use them in preference to fields in the comments. Scripts should also have an
@ut put tag showing sample output, aswell as @r gs and @Qisage where appropriate. Example 6 shows
proper form for script-level documentation, using a combination of documentation comments and NSE
variables.

28 9. Writing Script Documentation (NSEDoc) <&

Example 6. An NSEDoc comment for a script

description = [[
Maps | P addresses to autononmous system (AS) nunbers.

The script works by sending DNS TXT queries to a DNS server which in
turn queries a third-party service provided by Team Cynru
(teamcynru.org) using an in-addr.arpa style zone set up especially for
use by Nmap.

1]

-- @isage
-- nmap --script asn-query.nse [--script-args dns=<DNS server>] <target>
-- @rgs dns The address of a recursive naneserver to use (optional).
-- (@ut put
-- Host script results:
| AS Nunbers:
| BGP: 64.13.128.0/21 | Country: US
| Oigin AS: 10565 SVCOLO-AS - Silicon Valley Col ocation, Inc.
-- Peer AS: 3561 6461
| BGP: 64.13.128.0/18 | Country: US
| Oigin AS: 10565 SVCOLO AS - Silicon Valley Col ocation, Inc.
| _ Peer AS: 174 2914 6461

aut hor = "jah, M chael"
license = "Sane as Nmap--See http://nmap. or g/ book/ man-1egal . ht m "
categories = {"discovery", "external "}

Compiled NSE modules are al'so documented with NSEDoc, even though they have no Lua source code.
Each compiled module hasafile<nodul enane>. | uadoc thatiskeptinthensel i b directory alongside
the Lua modules. This file lists and documents the functions and tables in the compiled module as though
they were written in Lua. Only the name of each function isrequired, not its definition (not even end). You
must use the @ane and @1 ass tags when documenting a table to assist the documentation parser in
identifying it. There are several examples of this method of documentation in the Nmap source distribution
(including nmap. | uadoc, bi t . | uadoc, and pcr e. | uadoc).

9.1. NSE Documentation Tags

The following tags are understood by NSEDoc:

@ar am
Describes a function parameter. The first word following @ar amis the name of the parameter being
described. The tag should appear once for each parameter of afunction.

Gee
Adds a cross-reference to another function or table.

@eturn
Describesareturn value of afunction. @ et ur n may be used multiple times for multiple return values.

<> 9. Writing Script Documentation (NSEDoc) 29

@isage
Provides a usage example of afunction, script, or module. In the case of afunction, the exampleisLua
code; for ascript it is an Nmap command line; and for amodule it is usually a code sample. @Qisage
may be given more than once. If it isomitted in a script, NSEDoc generates a default standardized usage
example.

@ ane
Defines aname for the function or table being documented. Thistag is normally not necessary because
NSEDoc infers names through code analysis.

@l ass
Defines the “class’ of the object being documented: f unct i on, t abl e, or nodul e. Like @ane,
thisis normally inferred automatically.

@ield
In the documentation of atable, @ i el d describes the value of anamed field.

@r gs
Describes a script argument, as used with the - - scri pt - ar gs option (see Section 2.4, “Arguments
to Scripts’ [9]). The first word after @r gs is the name of the argument, and everything following
that isthe description. Thistag is specia to script-level comments.

@ut put
Thistag, which is exclusive to script-level comments, shows sample output from a script.

@ut hor
This tag, which may be given multiple times, lists the authors of an NSE module. For scripts, use the
aut hor variable instead.

@opyri ght
This tag describes the copyright status of amodule. For scripts, usethel i cense variable instead.

10. Script Parallelism in NSE

Before now, we have only lightly touched on the steps NSE takes to allow multiple scripts to execute in
parallel. Usually, the author need not concern himself with how any of thisisimplemented; however, there
are acouple cases that warrant discussion that we will cover in this section. As a script writer, you may need
to control how multiple scriptsinteract in alibrary; you may require multiple threads to work in parallel; or
perhaps you need to serialize access to a remote resource.

The standard mechanism for parallel execution is athread. A thread encapsulates execution flow and data
of a script using the Luat hr ead or cor out i ne. A Lua thread allows us to yield the current script at
arbitrary points to continue work on another script. Typically, these yield points are blocking calls to the
NSE Socket library. The yield back to NSE is also transparent; the script is unaware of the transition and
views each socket method as a blocking call.

L et'sgo over some common terminology. A script isanalogousto abinary executable; it holdstheinformation
necessary to execute our script. A thread (a Lua coroutine) is analogous to a process; it runs a script against
ahost and possibly port. We sometimes abuse our terminology throughout the book by referring to athread

30 10. Script Parallelism in NSE <&

as arunning script. We are really saying the "instantiation of the script”, in the same sense that a processis
the instantiation of an executable.

NSE providesthe bare-bone essentials you need to expand your degree of parallelism beyond the basic script
thread: new independent threads, M utexes, and Condition Variables. We will go into depth on each of these
mechanisms in the following sections.

10.1. Worker Threads

There are several instances where a script needs finer control with respect to parallel execution beyond what
is offered by default with a generic script. The common reason for this need is the inability for a script to
read from multiple sockets concurrently. For example, an HTTP spidering script may want to have multiple
Lua threads querying web server resources in paralel. To solve this problem, NSE offers the function
stdnse. new_t hr ead to create worker threads. These worker threads have all the power of independent
scripts with the only restriction that they may not report Script Output.

Each worker thread launched by a script is given amain function and a variable number of argumentsto be
passed to the main function by NSE:

wor ker _thread, status_function = stdnse.new thread(min, ...)

You are given back the Luathread (coroutine) that uniquely identifies your worker thread and a status query
function that queries the status of your new worker.

The status query function returns two values:
status, error_object = status_function()

Thefirst return value, st at us, issimply the return value of cor out i ne. st at us on the worker thread
coroutine (more precisely, the base coroutine, read more about base coroutine in the section called “The
Base Thread” [36]). The second return value contains the error object thrown that ended the worker thread
or ni | if no error was thrown. This object is typically a string, like most Lua errors. However, recall that
any Luatype can be an error object, even ni | ! You should inspect the error object, the second return value,
only if the status of your worker is" dead" .

NSE discardsall return values from the main function when the worker thread finishes execution. You should
communicate with your worker through the use of mai n function parameters, upvalues, or function
environments. You will see how to do thisin Example 7.

Finally, when using worker threads you should always use condition variables and Mutexes to coordinate
with your worker threads. Keep in mind that Nmap is single threaded so there are no (memory) issues in
synchronization to worry about; however, there is resource contention. Your resources are usually network
bandwidth, network sockets, etc. Condition variables are also useful if the work for any single thread is
dynamic. For example, aweb server spider script with apool of workerswill initially have asingleroot html
document. Following the retrieval of the root document, the set of resources to be retrieved (the worker's
work) will become very large (an html document adds many new hyperlinks (resources) to fetch).

<& 10. Script Parallelism in NSE 31

Example 7. Worker Thread Example

|l ocal requests = {"/", "/index.htm ", --[[long list of objects]]}
function thread_main (host, port, responses, ...)

| ocal condvar = nmap. condvar (responses);

|l ocal what = {n = select("#", ...), ...};

|l ocal allRegs = nil

for i =1, what.n do

all Reqs = http. pGet(host, port, what[i], nil, nil, allReqgs);
end
|l ocal p = assert(http.pi peline(host, port, allReqgs));

for i, response in ipairs(p) do responses[#responses+l] = response end
condvar "signal"
end

function many_requests (host, port)
| ocal threads = {};
| ocal responses = {};
| ocal condvar = nmap. condvar (responses);

local i = 1;
r epeat
local j = math. mn(i+10, #requests);
|l ocal co = stdnse.new thread(thread _main, host, port, responses,
unpack(requests, i, j));
threads[co] = true;
i = j+1;
until i > #requests;
r epeat

condvar "wait";
for thread in pairs(threads) do

if coroutine.status(thread) == "dead" then threads[thread] = nil end
end
until next(threads) == nil
return responses;

end

For brevity, this example omits typical behavior of atraditional web spider. The requests table is assumed
to contain a number of objects (hundreds or thousands) to warrant the use of worker threads. Our example
will dispatch a new thread with 11 relative Uniform Resource Identifiers (URI) to request, up to the length
of ther equest s table. Worker threads are very cheap so we are not afraid to create a lot of them. After
we dispatch this large number of threads, we wait on our Condition Variable until every thread has finished
then finally return the responses table.

You may have noticed that we did not use the status function returned by st dnse. new_t hr ead. You
will typically use thisfor debugging or if your program must stop based on the error thrown by one of your
worker threads. Our simple example did not require this but a fault tolerant library may.

10.2. Thread Mutexes

Recall from the beginning of this section that each script execution thread (e.g. f t p- anon running against
an FTP server on atarget host) yields to other scripts whenever it makes a call on network objects (sending

32 10. Script Parallelism in NSE <>

or receiving data). Some scripts require finer concurrency control over thread execution. An exampleisthe
whoi s script which querieswhois serversfor each target | P address. Because many concurrent queries often
result in getting one's | P banned for abuse, and because a single query may return additional information for
targets other threads are running againgt, it is useful to have other threads pause while one thread performs
aquery.

To solvethis problem, NSE includesanut ex function which providesa mutex (mutual exclusion object)
usable by scripts. The Mutex allows for only one thread to be working on an object. Competing threads
waiting to work on this object are put in the waiting queue until they can get a"lock" onthe Mutex. A solution
for thewhoi s problem aboveisto have each thread block on aMutex using acommon string, thus ensuring
that only onethread is querying whois servers at once. When finished querying the remote servers, the thread
can store results in the NSE registry and unlock the Mutex. Other scripts waiting to query the remote server
can then obtain alock, check for usable results retrieved from previous queries, make their own queries, and
unlock the Mutex. Thisis agood example of serializing access to aremote resource.

Thefirst step in using a Mutex isto create one viaacall to the nnap library:
nmut exf n = nmap. nut ex(obj ect)

The mut exf n returned is a function which works as a Mutex for the obj ect passed in. This object can
be any Lua data type except ni | , bool eans, and nunber s. The returned function allows you to lock,
try to lock, and release the Mutex. Itsfirst and only parameter must be one of the following:

"l ock"
Make a blocking lock on the Mutex. If the Mutex is busy (another thread has a lock on it), then the
thread will yield and wait. The function returns with the Mutex locked.

"tryl ock"”
Makes a non-blocking lock on the Mutex. If the Mutex is busy then it immediately returns with areturn
value of f al se. Otherwise the Mutex locks the Mutex and returnst r ue.

"done"
Releases the Mutex and allows another thread to lock it. If the thread does not have alock on the Mutex,
an error will be raised.

“runni ng"
Returnsthe thread locked on the Mutex or ni | if the Mutex is not locked. This should only be used for
debugging asit interferes with garbage collection of finished threads.

NSE maintains a weak reference to the Mutex so other calls to nnap. mut ex with the same object will
return the same function (Mutex); however, if you discard your reference to the Mutex then it may be
collected; and, subsequent calls to nmap. nut ex with the object will return a different Mutex function!
Thus you should save your Mutex to a (local) variable that persists for the entire time you require.

A simple example of using the APl is provided in Example 8. For red-life examples, read the
asn- query. nse andwhoi s. nse scriptsin the Nmap distribution.

1 http: //en.wikipedia.org/wiki/Mutual_exclusion

<& 10. Script Parallelism in NSE 33

http://en.wikipedia.org/wiki/Mutual_exclusion
http://en.wikipedia.org/wiki/Mutual_exclusion

Example 8. Mutex manipulation

|l ocal mutex = nmap. mutex("My Script's Unique ID");
function action(host, port)
mut ex "l ock";
-- Do critical section work - only one thread at a tinme executes this.
mut ex "done";
return script_out put;
end

10.3. Condition Variables

Condition Variables arose out of a need to coordinate with worker threads created using the
st dnse. new_t hr ead function. A Condition Variable allows one or more threads to wait on an object
and one or more threads to awaken one or all threads waiting on the object. Said differently, multiple threads
may unconditionally bl ock on the Condition Variable by waiting. Other threads may wake up one or al
of the waiting threads via signalling the Condition Variable.

As an example, we may dispatch multiple worker threads that will produce results for us to use, like our
earlier Example 7 [32]. Until all the workersfinish, our master thread must sleep. Note that we cannot pol |
for resultslikein atraditional Operating System thread because NSE does not preempt Luathreads. Instead,
we use a Condition Variable that the master thread waits on until awakened by a worker. The master will
continually wait until al workers have terminated.

Thefirst step in using a Condition Variable is to create one viaacall to the nmap library:
condvarfn = nnmap. condvar (obj ect)

The semanticsfor Condition Variablesare similar to Mutexes. Thecondvar f n returnedisafunction which
works as a Condition Variable for the obj ect passedin. This object can be any Luadatatype exceptni |,
bool eans, andnunber s. Thereturned function allowsyou to wait, signal, and broadcast on the Condition
Variable. Itsfirst and only parameter must be one of the following:

"wait"
Wait on the Condition Variable. This adds your thread to the waiting queue for the Condition Variable.
You will resume execution when another thread signals or broadcasts on the Condition Variable.

"signal "
Signal the Condition Variable. A thread in the Condition Variable's waiting queue will be resumed.

"broadcast"
Signal all threadsin the Condition Variable's waiting queue.

Like with Mutexes, NSE maintains a weak reference to the Condition Variable so other cals to
nmap. condvar with the same object will return the same function (Condition Variable); however, if you
discard your reference to the Condition Variable then it may be collected; and, subsequent calls to
nmap. condvar with the object will return a different Condition Variable function! Thus you should save
your Condition Variable to a (local) variable that persists for the entire time you require.

34 10. Script Parallelism in NSE <&

When using Condition Variables, it isimportant to check the predicate before and after waiting. A predicate
is atest on whether to continue doing work within your worker or master thread. For your worker threads,
thiswill at the very least include atest to see if the master thread is still alive. You do not want to continue
doing work when no thread will use your results. A typical test before waiting may be: check whether the
master is still running, if not then quit; check that there is work to be done; if not then wait.

NSE does not guarantee spurious wakeups will not occur; that is, there is no guarantee your thread will not
be awakened when no thread called " si gnal " or " br oadcast " onthe Condition Variable. The typical,
but not only, reason for a spurious wakeup is the termination of athread using a Condition Variable. Thisis
an important guarantee NSE makes that allows you to avoid deadlock where aworker or master waits for a
thread to wake them up that ended without signaling the Condition Variable.

10.4. Collaborative Multithreading

One of Luasleast known features is collaborative multithreading through coroutines. A coroutine provides
an independent execution stack that isresumable. The standard cor out i ne provides accessto the creation
and manipulation of coroutines. Lua's online first edition of Programming in Lua™® contains an excellent
introduction to coroutines. We will provide an overview of the use of coroutines here for completeness but
thisis no replacement for reviewing PiL.

We have mentioned coroutines throughout this section as threads. Thisisthetype (t hr ead) of a coroutine
in Lua. Users of NSE that have any parallel programming experience with Operating System threads may
be confused by this. As a reminder, Nmap is single threaded. Lua threads provide the basis for parallel
scripting but only one thread is ever running at atime.

A Luaf unct i on executesontop of aLuat hr ead. Thethread maintains a stack of active functions, local
variables, and the current instruction. We can switch between coroutines by explicitly yielding the running
thread. The coroutine which resumed the yielded thread resumes operation. Example 9 shows a brief use of
coroutines to print numbers.

Example 9. Basic Coroutine Use

local function main ()
coroutine.yield(1)
coroutine.yield(2)
coroutine.yield(3)

end

local co = coroutine.create(main)

for i =1, 3 do
print(coroutine.resune(co))

end

--> true 1

--> true 2

--> true 3

What you should take from this example is the ability to transfer between flows of control extremely easily
through the use of cor out i ne. yi el d. Thisis an extremely powerful concept that enables NSE to run
scriptsin parallel. All scripts are run as coroutines that yield whenever they make a blocking socket function

2 nttp: /iwwvw ua.org/pil/

‘@ 10. Script Parallelismin NSE 35

http://www.lua.org/pil/
http://www.lua.org/pil/

call. This enables NSE to run other scripts and later resume the blocked script when its I/O operation has
compl eted.

As a script writer, there are times when coroutines are the best tool for ajob. One common use in socket
programming is to filter data. You may produce a function that generates al the links from an HTML
document. Aniterator using st ri ng. grmat ch only catchsasingle pattern. Because some complex matches
may take many different Lua patterns, it is more appropriate to use a coroutine. Example 10 shows how to
do this.

Example 10. Link Generator

function links (htm _docunent)
l ocal function generate ()
for min string.gmatch(htm _docunent, "url % (.-)%") do

coroutine.yield(m -- css url
end
for min string.gmatch(htm _docunent, "href%*=%*\"(.-)\"") do
coroutine.yield(m -- anchor link
end
for min string.gmatch(htm _docunent, "src%*=%*\"(.-)\"") do
coroutine.yield(m -- ing source
end
end
return coroutine.w ap(generate)
end

function action (host, port)
-- ... get HTM. docunent and store in html docunent | ocal
for link in links(htm docunent) do
links[#links+1l] = link; -- store it
end

end

There are many other instances where coroutines may provide an easier solution to a problem. It takes
experience from use to help identify those cases.

The Base Thread

Because scripts may use coroutines for their own multithreading, it is important to be able to identify an
owner of aresource or to establish whether the script isstill alive. NSE providesthefunctionst dnse. base
for this purpose.

Particularly when writing alibrary that attributes ownership of a cache or socket to a script, you may use the
base thread to establish whether the script is still running. cor out i ne. st at us on the base thread will
givethe current state of the script. In caseswherethe scriptis” dead" , you will want to release the resource.
Be careful with keeping referencesto these threads; NSE may discard a script even though it has not finished
executing. The thread will till report a status of " suspended” . You should keep a weak reference to the
thread in these cases so that it may be collected.

36 10. Script Parallelism in NSE &>

11. Version Detection Using NSE

The version detection system built into Nmap was designed to efficiently recognize the vast majority of
protocols with a simple probe and pattern matching syntax. Some protocols require more complex
communication than version detection can handle. A generalized scripting language as provided by NSE is
perfect for these tough cases.

NSE'sver si on category contains scripts that enhance standard version detection. Scriptsin this category
are run whenever you request version detection with - sV; you don't need to use - sCto run these. This cuts
the other way too: if you use - sC, you won't get ver si on scriptsunlessyou also use - sV.

One protocol which we were unable to detect with normal version detection is Skype version 2. The protocol
waslikely designed to frustrate detection out of afear that tel ecom-affiliated Internet service providers might
consider Skype competition and interfere with the traffic. Yet we did find one way to detect it. If Skype
receivesan HTTP GET request, it pretends to be aweb server and returns a404 error. But for other requests,
it sends back achunk of random-looking data. Proper identification requires sending two probes and comparing
the two responses—an ideal task for NSE. The simple NSE script which accomplishes this is shown in
Example 11.

<& 11. Version Detection Using NSE 37

Example 11. A typical version detection script (Skype version 2 detection)

description = [[
Detects the Skype version 2 service.

1]

aut hor = "Brandon Enri ght"

license = "Sane as Nmap--See http://nmap. or g/ book/ man-1egal . ht m "
categories = {"version"}

require "comt

portrul e = function(host, port)

return (port.nunmber == 80 or port.nunber == 443 or
port.service == nil or port.service == "" or
port.service == "unknown")
and port.protocol == "tcp" and port.state == "open"
and port.service ~= "http" and port.service ~= "ssl/http"

end

action = function(host, port)
| ocal status, result = comm exchange(host, port,
"CGET / HITP/1.0\r\n\r\n", {bytes=26, proto=port.protocol})
if (not status) then

return

end

if (result ~= "HTTP/ 1.0 404 Not Found\r\n\r\n") then
return

end

-- So far so good, now see if we get random data for another request
status, result = conm exchange(host, port,
"random data\r\n\r\n", {bytes=15, proto=port.protocol})

if (not status) then

return

end

if string.match(result, "[?"%!-~].*["%!-~].*["%!-~]") then
-- Detected
port.version. name = "skype2"
port. version. product = "Skype"
nmap. set _port_versi on(host, port, "hardmatched")
return

end

return

end

If the script detects Skype, it augmentsits por t table with now-known nane and pr oduct fields. It then
sends this new information to Nmap by calling nmap. set _port _ver si on. Severa other version fields
are availableto be set if they are known, but in this case we only have the name and product. For the full list
of version fields, refer tothe nmap. set _port _ver si on documentation.

Notice that this script does nothing unless it detects the protocol. A script shouldn't produce output (other
than debug output) just to say it didn't learn anything.

38 11. Version Detection Using NSE B>

12. Example Script: fi nger. nse

Thefinger script (f i nger . nse) isaperfect example of ashort and simple NSE script.

First the information fields are assigned. A detailed description of what the script actually does goes in the
descri pti on field.

description = [[
Attenpts to get a |list of usernanes via the finger service.

1]
aut hor = "Eddie Bel | "

license = "Sane as Nmap--See http://nmap. or g/ book/ man-1egal . ht m "

The cat egori es field is atable containing all the categories the script belongs to—These are used for
script selection with the- - scri pt option:

categories = {"default", "discovery"}

You can use the facilities provided by the nselib (Section 6, “NSE Libraries’ [13]) with r equi r e. Here
we want to use common communication functions and shorter port rules:

require "comft
require "shortport"

We want to run the script against the finger service. So we test whether it is using the well-known finger
port (79/ t cp), or whether the service is named “finger” based on version detection results or in the port
number'slisting in nmap- ser vi ces:

portrule = shortport.port_or_service(79, "finger")

First, the script uses nmap. new_t ry to create an exception handler that will quit the script in case of an
error. Next, it passes control to conm exchange, which handles the network transaction. Here we have
asked to wait in the communication exchange until we receive at least 100 lines, wait at least 5 seconds, or
until the remote side closes the connection. Any errors are handled by thet r y exception handler. The script
returns a string if the call to conm exchange() was successful.

action = function(host, port)
local try = nmap. new_try()

return try(conmm exchange(host, port, "\r\n",
{l'i nes=100, proto=port.protocol, tinmeout=5000}))
end

13. Implementation Details

Now it istimeto explore the NSE implementation detail s in depth. Understanding how NSE worksis useful
for designing efficient scripts and libraries. The canonical reference to the NSE implementation isthe source
code, but this section provides an overview of key details. It should be valuableto folks trying to understand
and extend the NSE source code, aswell asto script authors who want to better-understand how their scripts
are executed.

P

B> 12. Example Script: f i nger . nse 39

13.1. Initialization Phase

During itsinitialization stage, Nmap loads the Lua interpreter and its provided libraries. These libraries are
fully documented in the Lua Reference Manual 13 Hereisa summary of the libraries, listed alphabetically
by their namespace name:

debug
The debug library provides a low-level API to the Lua interpreter, allowing you to access functions
along the execution stack, retrieve function closures and object metatables, and more.

io
The Input/Output library offers functions such as reading from files or from the output from programs
you execute.

mat h
Numbers in Lua usually correspond to the doubl e C type, so the math library provides access to
rounding functions, trigonometric functions, random number generation, and more.

0s
The Operating System library provides system facilities such as filesystem operations (including file
renaming or removal and temporary file creation) and system environment access.

package
Among the functions provided by Lua's package-libisr equi r e, which isused to load nselib modul es.

string
Thestring library providesfunctions for manipulating Luastrings, including printf-style string formatting,
pattern matching using L ua-style patterns, substring extraction, and more.

tabl e
The table manipulation library is essential for operating on Lua's central data structure (tables).

In addition to loading the libraries provided by Lua, the nmap namespace functions are loaded. The search
paths are the same directories that Nmap searches for its data files, except that the nsel i b directory is
appended to each. At this stage any provided script arguments are stored inside the registry.

The next phase of NSE initidization is loading the selected scripts, based on the defaults or arguments
provided to the- - scri pt option. Thever si on category scripts are loaded as well if version detection
was enabled. NSE first tries to interpret each - - scri pt argument as a category. This is done with aLua
C functioninnse_i ni t. cc named ent ry based on data from the scri pt . db script categorization
database. If the category is found, those scripts are loaded. Otherwise Nmap tries to interpret - - scri pt

arguments asfilesor directories. If nofilesor directorieswith agiven name are found in Nmap's search path,
an error israised and the Script Engine aborts.

If adirectory is specified, all of the. nse filesinside it are loaded. Each loaded file is executed by Lua. If
aportrule is present, it is saved in the porttests table with a portrule key and file closure value. Otherwise,
if the script has ahostrule, it is saved in the hosttests table in the same manner.

13 http: //imww.lua.org/manual/5.1/manual .html

40 13. Implementation Details <&

http://www.lua.org/manual/5.1/manual.html
http://www.lua.org/manual/5.1/manual.html

13.2. Matching Scripts with Targets

After initidization isfinished, thehost r ul es and por t r ul es are evaluated for each host in the current
target group. The rules of every chosen script istested against every host and (in the case of service scripts)
each open and open| fil t er ed port on the hosts. The combination can grow quite large, so portrules
should be kept as simple as possible. Save any heavy computation for the script'sact i on.

Next, aLuathread is created for each of the matching script-target combinations. Each thread is stored with
pertinent information such asits dependencies, target, target port (if applicable), host and port tables (passed
totheact i on), and the script type (service or host script). The mai nl oop function then processes each
runlevel grouping of threadsin order.

13.3. Script Execution

Nmap performs NSE script scanning in parallel by taking advantage of Nmap's Nsock parallel /0 library
and the Lua coroutines 4| anguage feature. Coroutines offer collaborative multi-threading so that scripts can
suspend themselves at defined pointsand allow other coroutinesto execute. Network 1/0O, particularly waiting
for responses from remote hosts, often involves long wait times, so thisis when scripts yield to others. Key
functions of the Nsock wrapper cause scriptsto yield (pause). When Nsock finishes processing such arequest,
it makes a callback which causes the script to be pushed from the waiting queue back into the running queue
S0 it can resume operations when its turn comes up again.

Thenai nl oop function moves threads between the waiting and running queues as needed. A thread which
yieldsis moved from the running queue into the waiting list. Running threads execute until they either yield,
complete, or fail with an error. Threads are made ready to run (placed in the running queue) by calling
process_wai ti ng2r unni ng. Thisprocess of scheduling running threads and moving threads between
gueues continues until no threads exist in either queue.

14 http: /Al ua.org/manual /5. 1/manual .htmi#2.11

<& 13. Implementation Details 41

http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.11

	Nmap Scripting Engine Documentation
	Table of Contents
	1. Introduction
	2. Usage and Examples
	2.1. Script Categories
	2.2. Command-line Arguments
	2.3. Script Selection
	2.4. Arguments to Scripts
	2.5. Complete Examples

	3. Script Format
	3.1. description Field
	3.2. categories Field
	3.3. author Field
	3.4. license Field
	3.5. dependencies Field
	3.6. Port and Host Rules
	3.7. Action

	4. Script Language
	4.1. Lua Base Language

	5. NSE Scripts
	6. NSE Libraries
	6.1. List of All Libraries
	6.2. Hacking NSE Libraries
	6.3. Adding C Modules to Nselib

	7. Nmap API
	7.1. Information Passed to a Script
	7.2. Network I/O API
	Connect-style network I/O
	Raw packet network I/O

	7.3. Exception Handling
	7.4. The Registry

	8. Script Writing Tutorial
	8.1. The Head
	8.2. The Rule
	8.3. The Mechanism

	9. Writing Script Documentation (NSEDoc)
	9.1. NSE Documentation Tags

	10. Script Parallelism in NSE
	10.1. Worker Threads
	10.2. Thread Mutexes
	10.3. Condition Variables
	10.4. Collaborative Multithreading
	The Base Thread

	11. Version Detection Using NSE
	12. Example Script: finger.nse
	13. Implementation Details
	13.1. Initialization Phase
	13.2. Matching Scripts with Targets
	13.3. Script Execution

